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Interfacial Polymerization (IP)
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m sz Introduction
Interfacial Polymerization (IP)

* A polycondensation reaction occurs at the interface
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I P Interfacial Polymerization

Trimesoyl-chloride (TMC) HN 0. _OH
coci
L {NH ©/NH UNH NH OH b+ heat
Qs \
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cloc coci - Polyamide film Protonated MPD
IP reaction unreactive with TMC

e

Porous polymeric support
HN NH, polym pp

\©/ A thin (<250nm) PA selective layer on top of a porous support

M-phenylene diamine (MPD)
Nulens and Ben Zvi, JMS (2022)
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Interfacial Polymerization (IP)

* A polycondensation reaction occurs at the inferface |

* |Pis used to fabricate thin-film composite (TFC) polyamide (PA)

membranes first synthesized in late 70s by Cadotte et al.

» State-of-the-art desalination by reverse osmosis (RO) >99% rejection



S

&0

o8 B8 & Loboratory

How can we understand more about IP?

g0 |ntroduction

In-situ monitoring — insight of reaction kinetics

MPD + Rdb
in DI water

DI water

TMC in
IsoparG

Ukrainsky and Ramon, JMS (2018)

Heat transfer

Reaction zone

Mass transfer

Hydrophobic

Nowbahar et al., J. Am. Chem. Soc. (2018)
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The product of IP:

Crumpled polyamide film
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The product of IP:

Crumpled polyamide film
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Why ?
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Why ?

Synthesis Morphology Performance

N

v Improve existing membranes

v Move towards ‘green materials’

Green TFC membrane

9
Park et al., Green Chem. 2021
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Why ?

The product of IP:

Crumpled polyamide film

How ?
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Hypothesis

Bubble
formation

Qi

How ?

Instability mechanisms

Thermo- Soluto-
capillarity capillarity
Stresses

Cold Hot Cold P m-
ot o¥ (o ) acar

-

Freger and Ramon, Prog. Polym. Sci. (2021)
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Elastic
crumpling
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The inability of a system to sustain itself against small perturbations.

Stable

Stable

Transition from stable to unstable: e.g., laminar to turbulent flow
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P roesies Local overheating in the reaction zone
§ & coooy ?soj 0.15% TMC

Zn) !

2 60

Eso- 05% TMC

£

"0 : Bubble

i —+— Interface .
32 i formation

0 10 20 30 40 50
Time [sec]

Ukrainsky and Ramon, JMS (2018) ﬁ

Nanobubbling Vaporization

No soluble gasses TFC-hexane TFC-pentane
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Organic phase

Aqueous phase

Gradients in intferfacial fension drive a flow:

Marangoni flow

IP system
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Reaction

Interface
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https://www.youtube.com/watch ?v=yJO'iN RJtXvpSo
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After filmm formation

iz Hypothesis
How ?
During film formation
' Vs L NI L S N - s 1y
Instability= flow in IP system
o4 Film Crumpling 1
th

A —

causes ‘degassing’

Freger and Ramon, Prog. Polym. Sci. (2021)
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Elastic
crumpling

Wrinkling of the formed
film due to different
elastic properties
between the film and
the support
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The product:

Crumpled polyamide film
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Re-thinking polyamide thin film
formation: How does interfacial "

o , How *
destabilization dictate film morphology:

Ines Nulens * l, Adi Ben-Zvi > @ 1, Ivo F.J. Vankelecom ? Guy Z. Ramon bodo®
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Methods
How can we observe a flowinIP ?

Microfluidic devi Ce\ ;

Agueous phase: fluorescent

Confocal
Microscopy

Videos of 2D
Image over time

partficles (1um) + MPD

Organic phase: Isopar-G + TMC
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Methods
Particle Tracking
Acquisition Localization
FWHM
I

Acquisition of the

|
displacement using

confocal microscopy
Tracking

/

X J

Manzo et al., Rep. on Prog. in Phys. (2015)
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What do we expect to see?
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What do we expect to see?
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No bulk flow.

The motion is
thermal-driven

Stokes-Einstein relation:

D =

kg

T

n
;

kB T Thermal energy

o nr Viscous friction

Boltzmann constant
temperature
dynamic viscosity
radius of particle
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What do we expect to see?
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Isotropic motion JJ} {\ Q Anisotropic moftion
N \

Evidence for instability

N

« Particles act as tracers that

 No bulk flow.

« The motion is thermal-driven. move with the bulk.

« Brownian + bulk directed mo’rizgn
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Results

Blank Dw:

Observed trajectories
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Time:0.02806(s)

Organic
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Non-directed motion of particles
« The motfion has Brownian behavior
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Results

Low concentrations:

DW+ 0.02% MPD

Videos

High concentrations:

DW+ 2% MPD
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Time:0.02806(s)

Results -
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* More directed motion of particles than
the blank

« The particles that are closer to the
inferface have more directed flow

Directed motion of particles towards
the interface

The particles reach the interface and
remain there
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[ MAges High concentrations

Hight O Hight 50 um Hight 100 um Hight 450 um

« A movement of particles towards the
interface and remaining there

Hight O
0.1 um particles




Different motion behaviors between blank, low, and high monomer

concenftrations.
At higher monomer concentrations a directed motion was observed.

At high monomer concentrations there is a motion towards the interface.

Tracking particles provides us with new insights about IP.
®

Data analysis.
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Different motion behaviors between blank, low, and high monomer

concenftrations.
At higher monomer concentrations a directed motion was observed.
At high monomer concentrations there is a motion towards the interface.

Tracking particles provides us with new insights about IP.
®

Data analysis.

The other side of the picture.
®




Aqueous phase Organic phase
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Different motion behaviors between blank, low, and high monomer

concenftrations.
At higher monomer concentrations a directed motion was observed.

At high monomer concentrations there is a motion towards the interface.

Tracking particles provides us with new insights about IP.
®

Data analysis.
The other side of the picture.

Kinetics of film formo’rioﬂ?
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